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Abstract. An extended time-dependent Hartree-Fock theory, known as the time-dependent density-matrix
theory (TDDM), is solved as a time-independent eigenvalue problem for low-lying 2% states in 2*O to
understand the foundation of the rather successful time-dependent approach. It is found that the calculated
strength distribution of the 2 states has physically reasonable behavior and that the strength function
is practically positive definite though the non-Hermitian Hamiltonian matrix obtained from TDDM does
not guarantee it. A relation to an Extended RPA theory with hermiticity is also investigated. It is found
that the density-matrix formalism is a good approximation to the Hermitian Extended RPA theory.

PACS. 21.60.Jz Hartree-Fock and random-phase approximations — 21.10.Re Collective levels

1 Introduction

The time-dependent density-matrix theory (TDDM) [1] is
a version of extended time-dependent Hartree-Fock theo-
ries which dynamically include two-body correlations. Al-
though TDDM has been formulated to deal with large-
amplitude collective motions [2,3], it has also been applied
to small-amplitude oscillations: Dipole and quadrupole gi-
ant resonances in stable nuclei [4,5] and low-lying states
in unstable oxygen isotopes [6,7]. Although the obtained
results are quite reasonable, the foundation of TDDM for
small-amplitude motions is not clear in its time-dependent
form. In this paper an eigenvalue problem of the small-
amplitude limit of TDDM (STDDM) is solved for low-
lying 2% states in 220 to better understand the time-
dependent approach. 240 is one of the neutron-rich nuclei
which attract recent experimental and theoretical interests
and is quite suitable for our present study: Although it is
an open-shell nucleus, the Hartree-Fock (HF) assumption
which we use to obtain a starting ground state is valid
as first-order approximation, and the proton degrees of
freedom which do not play a major role because of the
proton shell closure can be neglected in a simple analysis
condidered here. The Hamiltonian matrix of STDDM is
not Hermitian as will be shown below. STDDM is com-
pared with an Extended RPA (ERPA) theory which has
hermiticity [8] and its relation to the ERPA theory is clar-
ified. This paper is organized as follows: The formulation
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of STDDM is presented in sect. 2. A numerical solution of
STDDM for low-lying 2% states in 24O is shown in sect. 3.
A comparison of STDDM with a more elaborate ERPA
with hermiticity is made in sect. 4 and sect. 5 is devoted
to a summary.

2 Small-amplitude limit of TDDM

TDDM gives the time evolution of the one-body density-
matrix p(1,1’) and the correlated part C(12,1'2) of the
two-body density-matrix, where numbers denote space,
spin, and isospin coordinates. The equations of motion
for p and C have been obtained by truncating the well-
known Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy
of reduced density matrices [9]. STDDM has been formu-
lated according to the following steps [10]: 1) Linearizing
the equations of motion for p and C with respect §p and
0C, where dp and 0C denote deviations from the ground-
state values py and Cy, i.e. dp = p— pg and §C = C — Cy,
respectively. 2) Expanding dp and §C with single-particle
states 1, as
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where 1), is chosen to be an eigenstate of the mean-field
Hamiltonian ho(po):

h2V2

ho(po)tia(1) = "=V (1) + / a20(1,2) po (2, 2)tha (1)

7p0(17 2)1%( )] = eawa(l) (3)

Here, the one-body density matrix pg is given as

V) =Y nlatba()vh (1), (4)

After Fourier transforming the linearized equations, the
equations for zaq/ (W) and X, aya/ay(w) can be written in

matrix form,
(o) (3)-«(x).

where w is an eigenvalue. The matrices a, b, ¢, and d are
explicitly given in appendix A. Equation (5) can also be
obtained from the following equations:

(Do|[a) an, H]|P) = w(Polal,an|®), (6)
@o\[aifla;?zaazaal,H]@) = w<@ola2/1a2/2aa2aall@>, (7)

where [ ] stands for the commutation relation, H is the
total Hamiltonian consisting of the kinetic energy term
and a two-body interaction, |@g) is the ground-state wave
function, and |@) the wave function for the excited state
with excitation energy w. Linearizing egs. (6) and (7)
with respect to Tao = (@0|ag,aa|¢> and Xo apafa, =
<Q50|a+ al, aa2aa1|@) and using the occupation matrix

nd = (@0|a 1 aq|Pg) and the two-body correlation ma-
trix Cglaw = @O\aala;awaal@@ A(ngla,lnng)

where A is an antisymmetrization operator, we arrive
at eq. (5). Equation (5) is reduced to the second RPA
(SRPA) [11,12] under the following two assumptions: The
first one is the HF approximation for the ground state, in
which n_, = aar fo With fo = 1 (0) for occupied (un-
occupled) states at zero temperature and C’alaza, o) = =0.
The other is to restrict X,,a,07q; only to two- parmclef
two-hole components and their complex conjugates.

The Hamiltonian matrix of eq. (5) is not Hermitian,
i.e. b # c', as is easily understood from its explicit form.
For a non-Hermitian Hamiltonian matrix, the left-hand-
side eigenvectors of the Hamiltonian matrix constitute a
basis which is orthogonal to (Zaa/, Xajasa)ay), and the
orthonormal condition is written as

§ xaa

aa’

+ Z Xoclagalaz )Xa1a2a/1a/2 (:u‘l)

a1a2a1a2

W) Zaar (1)

(Alu")
= Opp's (8)

where |u) represents an eigenvector (Taa’s Xo,asalas)
with the eigenvalue wy,, and |f) the left-hand-side eigen-
vector of the Hamiltonian matrix with the same eigen-
value:

@ 1) (55) —wna X )
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The completeness relation is written as

; (X %a/,(#,)(u)) (“%f-fﬁ'(ﬂ) Xglﬁzﬁ{ﬁé(ﬂ‘)) =1, (10)

a1a2a1a2

where [ is the unit matrix. In general the strength function
is defined as

= > (|QI%0)*(E — E,),

E,>0

(11)

where |[¥p) is the ground state, |¥,) is an excited state
with an excitation energy F,, and @) an excitation oper-
ator. The strength function in STDDM is calculated in a
way similar to that used in TDDM. In TDDM, an initial
excited wave function |@(t = 0)) is given by boosting the
ground-state wave function |Pg) as

[(t = 0)) = o). (12)
Then the initial values of the time-dependent amplitudes
Taor and Xy, 0,0/ a, are given at first order of k as

Zaa(0) = (B(t = 0)[ay as|P(t = 0))
~ ik(®ol[at aa, Q)l%o), (13)
Xocla2a’1a/2 (O) ~ Zl{?(@o“di a+’2aa2aa1aQH¢0>' (14)

In TDDM the time dependence of Tao' and X, as0/ay 18
determined by solving numerically the TDDM equations.
It can also be expressed using the eigenstates of eq. (5) as

()= 35) (38) -
-] ()5 (3). o

where the completeness relation eq. (10) is inserted. The

(@()|Q|(t)) for a one-

m

time-dependent moment Q(t) =
body operator becomes

> | {exp (—z”;;t) <Z<a|c2a’>xa/a<u>>

Re(w, >0 aa’

Qt) =

x (7, (O)+X X(0)) + complex conjugate}7 (16)

where we use the fact that both states with w;, and —wy},
are eigenstates of eq. (5). The strength function in TDDM

is obtained from the Fourier transformation of Q(¢t) [1] as

wkh/ Q)

where an artificial damping factor I” is introduced to ob-
tain a smooth distribution for S(FE). Equations (16) and

Et
e T/2h gin —dt, (17)
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(17) suggest that the strength function in STDDM has
the form

S(F)=—~m{ 3 [(§}M@wmaam)

T
Re(w,)>0 aao’
. walﬁ T ) E - wu—&-zF/Q
BB’
- <Z<O‘|Q|a To a )
aa’
18
x| D_(leIs) g )EW*HM . (18)
BB’
where &, (1) is defined as
B (1) =D (®olla an, afax]|®o)Ern (1)
AN
+ Z (Pol[a ,aa,aj{laj\’ ax, a)\’”@0>X>\1)\2A’X ().
A1 A2 M, AL

(19)

The strength function S(E) in STDDM is not guaranteed
to be positive definite, as is easily understood from its
expression, eq. (18).

3 Numerical solution

In this section we present a numerical solution of eq. (5)
calculated for low-lying 2F states in 24O, where a time-
dependent approach has previously been applied [7]. The
E2 strength function is calculated according to the follow-
ing steps:

1) A static HF calculation is performed to obtain the
initial ground state. The neutron 2s;,5 state is assumed
to be the last fully occupied neutron orbit of 2Q. The
Skyrme III is used as the effective interaction. It has
been used as one of the standard parameterizations of
the Skyrme force in nuclear-structure calculations even for
very neutron-rich nuclei [13,14]. The single-particle wave
functions are confined to a sphere with radius of 12 fm.
The mesh size used is 0.1 fm.

2) To obtain the correlated ground state |®g), we
evolve the HF ground state using the TDDM equations
for a(1,1), naa(t) and Cu,ayaqay(t) [6,7] and the fol-
lowing time-dependent residual interaction:

v(t) = (1 —e /M o(r — 7).

The time constant 7 should be sufficiently large to obtain
a nearly stationary solution of the TDDM equations [15].
We choose 7 to be 300 fm/c. In the calculation of nqq/ (%)
and Cy, aya/ay (t), the single-particle states are limited to
the neutron orbits 1ds 3, 251 /2, and 1dg/5. In a consistent
calculation the residual interaction should be the same as

(20)
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Fig. 1. Strength distributions of the neutron quadrupole
modes in 2*O calculated in STDDM (solid line), RPA (dashed
line) and SRPA (dotted line).

that used to generate the mean field. However, a Skyrme-
type force contains momentum-dependent terms, which
make the computation time of two-body matrix elements
quite large. Therefore, we need to use a simple force of
the d-function form v o< 63(r — 7’). We use the following
pairing-type residual interaction of the density-dependent
d-function form [16]:

o(r — 1) = vo(1 — p(r) /po)5*(r — 1),

where p(r) is the nuclear density. The parameters py and
vo are set to be 0.16 fm™3 and —1000 MeV fm3, respec-
tively. Similar values of py and vy have been used in the
Hartree-Fock-Bogoliubov calculations [17-19] in a trun-
cated single-particle space. The time step used to solve
the TDDM equations is 0.75 fm/c.

3) At t = 57 we stop the TDDM calculation and
solve eq. (5). Since we are interested in low-lying states
which originate in inner-shell transitions, we use only the
neutron 1ds /2,281 /2, and 1ds/, states. The dimension of
the Hamiltonian matrix is about 650 x 650 when these
single-particle states are used. The strength function for
2% states is calculated using eq. (18) with Q = r2Yaq (6, ¢).
We use I' = 0.5 MeV.

The eigenvalues of some 27 states become imaginary
because the Hamiltonian matrix of eq. (5) is not Her-
mitian. However, their imaginary components are quite
small (less than 0.08 MeV). Some 2T states have also neg-
ative quadrupole strengths because the positivity of S(E)
is not guaranteed. However, the negative contributions are
so small that S(F) becomes almost positive in the entire
energy region when it is smoothed with I' = 0.5 MeV.
The obtained result in STDDM (solid line) is shown in
fig. 1, where the strength functions in RPA (dashed line)
and SRPA (dotted line) are also presented for comparison.
The first 2% state calculated in STDDM is energetically
shifted upward and becomes significantly more collective
as compared with that in RPA. The increase in the excita-
tion energy is due to the lowering of the ground state, and
the enhancement of the collectivity of the first 27 state

(21)
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is due to the mixing of two-body configurations intensi-
fied by ground-state correlations. These properties of the
first 2% state under the influence of ground-state corre-
lations are similar to those obtained from quasi-particle
RPA calculations [20,21] and also from the TDDM calcu-
lation [7]. Large single-particle space including continuum
states has been used in these realistic calculations [20,
21,7] so as to deal with giant resonances as well as low-
lying states. Therefore, only a semi-quantitative compari-
son between our previous TDDM result 7] and the present
STDDM calculation, which can only be performed in very
truncated single-particle space, should be made for lowest-
lying states. In SRPA, where ground-state correlations
are neglected, the 27 states become also collective due
to the coupling to two-particle-two-hole configurations,
as shown in fig. 1. However, their excitation energies are
simply shifted downward. This might cause serious prob-
lems when unperturbed particle-hole energies are small
and (or) when the coupling to two-body configurations is
strong. The numerical solution of eq. (5) shown in this
section is physically reasonable and also gives additional
justification to its equivalent time-dependent approach.

4 Discussions

In this section we discuss a relation between STDDM and
a more elaborate Extended RPA theory (ERPA) which
has hermiticity [8]. First, we briefly present the ERPA the-
ory. The ground state |®y) in ERPA is constructed so that

(o|[H, af aq]|Bo) = 0, (22)
<€I)0HH7 a:;] a(tgaa;aa’l]|¢0> =0, (23)
(Po|[H, a;fl a;fg al‘s Ao, aa;aag]@o) =0 (24)

are satisfied for any single-particle indices. In other words,

0 0 . .
Naars Coyasaray and the three-body correlation matrix
CO ’ ’

o1 azasal ajay A€ determined so that the above equations

are satisfied. The explicit expressions for egs. (22)-(24) are
shown in ref. [8]. Although it is not evident to find an ana-
lytic solution of egs. (22)-(24) [22], a method for obtaining

0 0 . .
N, and Ca1a2a’1 o numerically has been proposed in

ref. [15] and already been tested for realistic nuclei [6,7,23]
as was shown in sect. 3. The ERPA equations are formu-
lated using the equation-of-motion approach [24,25] as

Wolllaf aar, H], QT]|W0) = w(Po|lafaa, QT][o) (25)
Wl af,al,anyan; = H], QF|W) =
w({Wl[: al‘la;aaéaa/l 5 QT |W), (26)

where the operator Q% is defined as
Qt = Z(m,\xa‘;ax + XAy a;:a:ga,\éa,\fl ), (27)
and |¥p) is assumed to have the following properties:

QT W) = |¥),
Q[%o) = 0.
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In egs. (26) and (27), : caf al
af,ab,acaq,  —  Alal, aq, (Dolal,aa|Po) + al,aa,
(Polaf aa; o). Equations (25) and (26) can be

written in matrix form

AC T - Sl T1 T

BD)\x) " “\1ns, )\ x )
where each matrix element is evaluated using the ground
state |®g):

: stands for Aoy Qo) =

(30)

Si(da: AN) = (Py[af an, af ax]|Po), (31)
SQ(CY&O/QOQO(Q : )\1)\2)\/1)\/2) =

(Po[: al‘l azzaaéaaa G a; a;\;axzaxl J120), (32)
Ti(a s AN, =

(Do|[at an,: a}\"l a;\:a)\éa,\/l J12o), (33)
To(ajaharas : AN) =

<¢0|[: a;rl a;rzaagaa’l 5 ajaA’”@O% (34)
Al a: AN = (Do [[at anr, H],al an]|®o), (35)
B(ajahaias i M) =

<@O|H azla;;aaéaa/l e H]a a;\ra)\’]|@0>v (36)
C’(o/a : )\1)\2)\/1>\/2) =

(Dol[[at ans, H],: aj\'la;\:aygaxl J|Po), (37)

D(ajabharas : AN N) =
(Do][[: al‘la;@)aaéaai L H, e a;rla;;a)\/za)\/l |1Po)-
(38)

All matrices in the above are written in terms of n?_,,
0 O . .
Calaza,la,z, and Calazaga’la’zag7 which are shown in
ref. [8]. Due to egs. (22)-(24), the above matrices have

the following symmetries:

A a: AN) = ANX:ad) = AAN : d/a)¥, (39)
B(ajahaias : AN) = C(NX 1 ajana)ab) =
C(AN : o dbharas)”, (40)

D(Ot/10/20410¢2 : )\1)\2)\/1)\,2) = D()\i)\lelAQ : 0110[20/10/2):
DA XM 2 o abaras)®. (41)

We explain in more detail the last relation as an example.
The following relation always holds due to the operator
identity

D(ajaharas : AN N,) — DN A s @ aana)al) =

(Po[[: aj;la;tzaarzaa/l L H, e aIlaIQaAéaAi J|Po)

— (Do [[: aj\rla;\r2a>\/2a>\/l  H,: a;rla;aaéaa/l J|Po) =

—(Do|[H, [: a, af,aaq a0 5 : af af axyan J)|Po).  (42)
The commutation relation between the two-body oper-
ators in the last line of the above equation is reduced to
three-body operators at most. Since egs. (22)-(24) are
valid, the last line of eq. (42) is identical to zero. Thus,
the symmetry of the matrix D is proven.
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The orthonormality condition in ERPA is given by [26]

* * Sl T1 X
(xﬂ' Xﬂ') (Tz 52) <Xi) = Ot

where x,, and X, constitute an eigenstate of eq. (30) with
w = w,. The completeness relation becomes

S () e (2 8)-r

m

(43)

(44)

The transition amplitudes for one-body and two-body op-
erators, zoor = (Wola),a,|¥) and Zoyasata, = (Yol

al,al, aa, a0, : |¥), are calculated as follows:
1 2

z _ Sl T1 X
Z )] \Ty 5 X )
Now we show a relation between STDDM and ERPA.
When the eigenvector (z,X) in STDDM is transformed

to (y,Y) as
($)=(25) ().

where S5 has no terms with the three-body correlation
matrices, the equation in STDDM becomes

aSh + Ty a1y + CSé Y\ _ ST Y a7

bSy +dTo o7y +ds, )\ v )=\ sy [\ v |- (47)
It is straightforward to prove that when the three-
body correlation matrices Ca1a2a3a’1 abal, are neglected,
three blocks of the above Hamiltonian matrix satisfy
the identities A = aS; + I3, B = bS; + dI», and
C = aT; + ¢S5 We explain the relation B = bS; +
dT5 in detail. When two-body and three-body operators
are decomposed using af af,aa, a0 = af af,aqaq;
+A(af, aar (Polat,any|Po) + af,aa; (Polat, an; |Po)) for a
two-body operator and a similar relation for a three-body
operator, the commutation relation [: aZf, cz,ch(l/cho/1 ;, H)
becomes

(45)

(46)

. . _ VA N+
[at af,an, a0 -, H] = g blarazaag : AN)ay,axn
AN

AN 1 \/
+ E d(arasaiag : A A A AS) ¢ aj\',la;\r/za)\gaAl :
A AN A,

+ Z e(agaoalady : Ai A AN AGNS)

A1 A2 Az N AL,

: ai,l ai,za;éa,\SaMa)\l :, (48)
where the matrix e consists of matrix elements of
the two-body interaction. In STDDM, the last term
on the right-hand side of the above equation is ne-
glected. Tt is clear from eq. (48) that B = (Pg|[[:
af af aay a2 H], af ax]|®o) = bSy + dT,. The matrix D

a1 a2
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has some terms which cannot be written by using b7} +d.S)
even if the three-body correlation matrices are neglected:
For example, all terms with the square of the two-body
correlation matrix cannot be expressed with 677. Thus, it
is found that STDDM is identical to ERPA under the fol-
lowing two assumptions: The first is that the three-body
correlation matrices can be neglected and the second is
that D = bTy 4+ dS5. Our numerical calculations so far
performed suggest that these assumptions are quite rea-
sonable. However, whether the non-hermiticity problem
is always contained within reasonable limits or not is a
subject to be investigated in further applications.

5 Summary

The eigenstates of the small amplitude limit of the time-
dependent density-matrix theory (STDDM) were calcu-
lated for the low-lying 2F states in 2O to better under-
stand the foundation of its corresponding time-dependent
approach. It is found that STDDM properly deals with
the effects of ground-state correlations on the low-lying
27 states and that the non-hermiticity of STDDM is
quite moderate: The eigenvalues have quite small imag-
inary parts and the strength function is practically posi-
tive definite although it is not guaranteed because of its
non-Hermitian form. A comparison of STDDM and an
Extended RPA (ERPA) theory with hermiticity was also
made, and it is found that STDDM is a reasonable approx-
imation to the ERPA theory. STDDM involves diagonal-
ization of a Hamiltonian matrix whose dimension rapidly
increases with increasing number of single-particle orbits.
In realistic calculations, therefore, the time-dependent ap-
proach (TDDM) which simply follows the time evolution
of the one-body and two-body amplitudes seems more
practical than STDDM: In fact, all the single-particle
states up to the 2p3/5 and 1f7/5 were taken for both pro-
tons and neutrons in the TDDM calculation for 240 [7].

Appendix A.

The matrices in eq. (5) are given as

a(aa’ : AN') = (ea — €ar)0arbarx

=D (BN ol A anls — (XN [v]BA) anfar), (A1)
8

baranalal : AN) = —m{ > [(Bazs = 1y 5)190; B0
Bvo

+n?¥25 (6’}’0/1 - ng(x’l )(650/2 - ngafz )} <)\Iﬁ|?]|’}/(5>A

+ Z(<>‘1a2|v|ﬁ7>027a’1a’2 + <)\/ﬁ|u|a,1’V>Ang'ya’26
By

N Bl01a2) ACE s
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+5a2A{ Z[@mﬁ - nglg)nga; nga;
Bv6

+ngl[3(5wa’1 - nga’l)(%o/z - ngaé)]<>‘lﬁ|v|75>z4
+ Z[<>‘/O‘1‘U‘5’Y>Cg'ya’la’2
By
N BIAACS s — V1053 ACY, ]|

‘Hso/l)\’{ Z[((séaé - ngaé)ng1ﬁng¢2’7
Byé

150y (601 = 110, 5) (azy — Mgy )1 (B1V[AG) 4

+> [(BYvIAS)CE sy
By

81N ACE 055 ~ (2B1013)ACE

s%x{ S (50 — 1% ), 470,
Bvyd

+nga’1 (60t15 - nglﬁ)(dfw"/ - ngg’y)]<ﬂ’}/|v|)\6>A

+ Z[<ﬁ7|v|/\all>cglazﬁ'y
By

HOBIINDAC g~ (@Bl P C, a1}

+ Z[<a1>‘l‘v‘ﬂ)‘>ACgaga’la’2 - <a2)\/‘v|ﬁ)‘>ACga1a’la’2

B
—(BN[0]abX) ACE, a1 + (BN [0]01N) ACq, 0046
(A.2)
claa’ - M A NI \y) = (@A [v[ A1 A2)dar
— (NS vl A2)dan, s (A.3)

d(ajasalaly : MANINS) =

(€a1 + €ay — 6@’1 - 60/2)6041/\1 6042)\2 604’1)\’1 60/2>\’

2

+5a’1)\’15a’2)\’2 Z((Salﬁéazv - 6042777’241[3
By

—00, 410, ) (BYI0[ A1 A2)

*5a1>\16a2)\2 2(5(1'1550/27 - 5"’2771%0‘/1
By

_5a’15n9ya’2)</\11)‘/2|v|ﬂ7>

+6a2)\250/2)\’2 Z((al)‘ll |’U|ﬁ)‘1>An%a'l
B

— (BN [v]ef Ar)and, 5)

F0asrs 00\, Z(<0¢1)\/2|U|ﬁ)‘1>14n%a’2
B8

—(BXs|v]ag A1) and, 5)
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+oaun 0oy O ({25 |v]BA) and,,
B

—(BXy[v]abAz) ang, )

+0a1 a1 0ajry Z((aw\ﬁlvlﬁ/\zﬂn%ag
3

— (BN [v]af A2) ami, p) (A.4)

and (€9 =

ajazalal

), and the subscript

where nl,, = (®olal a.|Po)

+ o+ 0 0
<€Z50|aa,1aa§aa2 aa, | Do) —.A(nala,1 Noyal
A indicates that the corresponding matrix element is an-
tisymmetrized.
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