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Abstract. An extended time-dependent Hartree-Fock theory, known as the time-dependent density-matrix
theory (TDDM), is solved as a time-independent eigenvalue problem for low-lying 2+ states in 24O to
understand the foundation of the rather successful time-dependent approach. It is found that the calculated
strength distribution of the 2+ states has physically reasonable behavior and that the strength function
is practically positive definite though the non-Hermitian Hamiltonian matrix obtained from TDDM does
not guarantee it. A relation to an Extended RPA theory with hermiticity is also investigated. It is found
that the density-matrix formalism is a good approximation to the Hermitian Extended RPA theory.

PACS. 21.60.Jz Hartree-Fock and random-phase approximations – 21.10.Re Collective levels

1 Introduction

The time-dependent density-matrix theory (TDDM) [1] is
a version of extended time-dependent Hartree-Fock theo-
ries which dynamically include two-body correlations. Al-
though TDDM has been formulated to deal with large-
amplitude collective motions [2,3], it has also been applied
to small-amplitude oscillations: Dipole and quadrupole gi-
ant resonances in stable nuclei [4,5] and low-lying states
in unstable oxygen isotopes [6,7]. Although the obtained
results are quite reasonable, the foundation of TDDM for
small-amplitude motions is not clear in its time-dependent
form. In this paper an eigenvalue problem of the small-
amplitude limit of TDDM (STDDM) is solved for low-
lying 2+ states in 24O to better understand the time-
dependent approach. 24O is one of the neutron-rich nuclei
which attract recent experimental and theoretical interests
and is quite suitable for our present study: Although it is
an open-shell nucleus, the Hartree-Fock (HF) assumption
which we use to obtain a starting ground state is valid
as first-order approximation, and the proton degrees of
freedom which do not play a major role because of the
proton shell closure can be neglected in a simple analysis
condidered here. The Hamiltonian matrix of STDDM is
not Hermitian as will be shown below. STDDM is com-
pared with an Extended RPA (ERPA) theory which has
hermiticity [8] and its relation to the ERPA theory is clar-
ified. This paper is organized as follows: The formulation
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of STDDM is presented in sect. 2. A numerical solution of
STDDM for low-lying 2+ states in 24O is shown in sect. 3.
A comparison of STDDM with a more elaborate ERPA
with hermiticity is made in sect. 4 and sect. 5 is devoted
to a summary.

2 Small-amplitude limit of TDDM

TDDM gives the time evolution of the one-body density-
matrix ρ(1, 1′) and the correlated part C(12, 1′2′) of the
two-body density-matrix, where numbers denote space,
spin, and isospin coordinates. The equations of motion
for ρ and C have been obtained by truncating the well-
known Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy
of reduced density matrices [9]. STDDM has been formu-
lated according to the following steps [10]: 1) Linearizing
the equations of motion for ρ and C with respect δρ and
δC, where δρ and δC denote deviations from the ground-
state values ρ0 and C0, i.e. δρ = ρ− ρ0 and δC = C−C0,
respectively. 2) Expanding δρ and δC with single-particle
states ψα as

δρ(11′, t) =
∑
αα′

xαα′(t)ψα(1, t)ψ∗
α′(1′, t), (1)

δC(121′2′, t) =
∑

α1α2α′
1α′

2

Xα1α2α′
1α′

2
(t)ψα1(1, t)

×ψα2(2, t)ψ
∗
α′

1
(1′, t)ψ∗

α′
2
(2′, t), (2)
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where ψα is chosen to be an eigenstate of the mean-field
Hamiltonian h0(ρ0):

h0(ρ0)ψα(1) = −�
2∇2

2m
ψα(1) +

∫
d2v(1, 2)[ρ0(2, 2)ψα(1)

−ρ0(1, 2)ψα(2)] = εαψα(1). (3)

Here, the one-body density matrix ρ0 is given as

ρ0(11′) =
∑
αα′

n0
αα′ψα(1)ψ∗

α′(1′). (4)

After Fourier transforming the linearized equations, the
equations for xαα′(ω) and Xα1α2α′

1α′
2
(ω) can be written in

matrix form, (
a c
b d

) (
x
X

)
= ω

(
x
X

)
, (5)

where ω is an eigenvalue. The matrices a, b, c, and d are
explicitly given in appendix A. Equation (5) can also be
obtained from the following equations:

〈Φ0|[a+
α′aα,H]|Φ〉 = ω〈Φ0|a+

α′aα|Φ〉, (6)

〈Φ0|[a+
α′

1
a+

α′
2
aα2aα1 ,H]|Φ〉 = ω〈Φ0|a+

α′
1
a+

α′
2
aα2aα1 |Φ〉, (7)

where [ ] stands for the commutation relation, H is the
total Hamiltonian consisting of the kinetic energy term
and a two-body interaction, |Φ0〉 is the ground-state wave
function, and |Φ〉 the wave function for the excited state
with excitation energy ω. Linearizing eqs. (6) and (7)
with respect to xαα′ = 〈Φ0|a+

α′aα|Φ〉 and Xα1α2α′
1α′

2
=

〈Φ0|a+
α′

1
a+

α′
2
aα2aα1 |Φ〉, and using the occupation matrix

n0
αα′ = 〈Φ0|a+

α′aα|Φ0〉 and the two-body correlation ma-
trix C0

α1α2α′
1α′

2
= 〈Φ0|a+

α′
1
a+

α′
2
aα2aα1 |Φ0〉−A(n0

α1α′
1
n0

α2α′
2
),

where A is an antisymmetrization operator, we arrive
at eq. (5). Equation (5) is reduced to the second RPA
(SRPA) [11,12] under the following two assumptions: The
first one is the HF approximation for the ground state, in
which n0

αα′ = δαα′fα with fα = 1 (0) for occupied (un-
occupied) states at zero temperature and C0

α1α2α′
1α′

2
= 0.

The other is to restrict Xα1α2α′
1α′

2
only to two-particle–

two-hole components and their complex conjugates.
The Hamiltonian matrix of eq. (5) is not Hermitian,

i.e. b �= c+, as is easily understood from its explicit form.
For a non-Hermitian Hamiltonian matrix, the left-hand-
side eigenvectors of the Hamiltonian matrix constitute a
basis which is orthogonal to (xαα′ ,Xα1α2α′

1α′
2
), and the

orthonormal condition is written as

〈µ̃|µ′〉 =
∑
αα′

x̃∗
αα′(µ)xαα′(µ′)

+
∑

α1α2α′
1α′

2

X̃∗
α1α2α′

1α′
2
(µ)Xα1α2α′

1α′
2
(µ′) = δµµ′ , (8)

where |µ〉 represents an eigenvector (xαα′ ,Xα1α2α′
1α′

2
)

with the eigenvalue ωµ, and |µ̃〉 the left-hand-side eigen-
vector of the Hamiltonian matrix with the same eigen-
value:

(x̃∗ X̃∗)
(
a c
b d

)
= ωµ(x̃∗ X̃∗). (9)

The completeness relation is written as

∑
µ

(
xαα′(µ)

Xα1α2α′
1α′

2
(µ)

) (
x̃∗

ββ′(µ) X̃∗
β1β2β′

1β′
2
(µ)

)
= I, (10)

where I is the unit matrix. In general the strength function
is defined as

S(E) =
∑

Eµ>0

|〈Ψµ|Q̂|Ψ0〉|2δ(E − Eµ), (11)

where |Ψ0〉 is the ground state, |Ψµ〉 is an excited state
with an excitation energy Eµ, and Q̂ an excitation oper-
ator. The strength function in STDDM is calculated in a
way similar to that used in TDDM. In TDDM, an initial
excited wave function |Φ(t = 0)〉 is given by boosting the
ground-state wave function |Φ0〉 as

|Φ(t = 0)〉 = eikQ̂|Φ0〉. (12)

Then the initial values of the time-dependent amplitudes
xαα′ and Xα1α2α′

1α′
2
are given at first order of k as

xαα′(0) = 〈Φ(t = 0)|a+
α′aα|Φ(t = 0)〉

≈ ik〈Φ0|[a+
α′aα, Q̂]|Φ0〉, (13)

Xα1α2α′
1α′

2
(0) ≈ ik〈Φ0|[a+

α′
1
a+

α′
2
aα2aα1 , Q̂]|Φ0〉. (14)

In TDDM the time dependence of xαα′ and Xα1α2α′
1α′

2
is

determined by solving numerically the TDDM equations.
It can also be expressed using the eigenstates of eq. (5) as

(
x(t)
X(t)

)
= exp

[
−i

(
a c
b d

)
t/�

] (
x(0)
X(0)

)
=

∑
µ

exp
[
−i

ωµt

�

] (
xµ

Xµ

)
(x̃∗

µ X̃∗
µ)

(
x(0)
X(0)

)
, (15)

where the completeness relation eq. (10) is inserted. The
time-dependent moment Q(t) = 〈Φ(t)|Q̂|Φ(t)〉 for a one-
body operator becomes

Q(t) =
∑

Re(ωµ>0)

{
exp

(
−i

ωµt

�

)(∑
αα′

〈α|Q|α′〉xα′α(µ)

)

×(x̃∗
µx(0)+X̃∗

µX(0)) + complex conjugate

}
, (16)

where we use the fact that both states with ωµ and −ω∗
µ

are eigenstates of eq. (5). The strength function in TDDM
is obtained from the Fourier transformation of Q(t) [1] as

S(E) =
1

πk�

∫ ∞

0

Q(t)e−Γt/2� sin
Et

�
dt, (17)

where an artificial damping factor Γ is introduced to ob-
tain a smooth distribution for S(E). Equations (16) and
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(17) suggest that the strength function in STDDM has
the form

S(E) = − 1
π
Im




∑
Re(ωµ)>0

[(∑
αα′

〈α|Q|α′〉xα′α(µ)

)

×

∑

ββ′
〈β|Q|β′〉x̃t

β′β(µ)




∗
1

E − ωµ + iΓ/2

−
(∑

αα′
〈α|Q|α′〉xα′α(µ)

)∗

×

∑

ββ′
〈β|Q|β′〉x̃t

β′β(µ)


 1

E + ω∗
µ + iΓ/2

]
 , (18)

where x̃t
αα′(µ) is defined as

x̃t
αα′(µ) =

∑
λλ′

〈Φ0|[a+
α′aα, a

+
λ aλ′ ]|Φ0〉x̃λλ′(µ)

+
∑

λ1λ2λ′
1λ′

2

〈Φ0|[a+
α′aα, a

+
λ1
a+

λ2
aλ′

2
aλ′

1
]|Φ0〉X̃λ1λ2λ′

1λ′
2
(µ).

(19)

The strength function S(E) in STDDM is not guaranteed
to be positive definite, as is easily understood from its
expression, eq. (18).

3 Numerical solution

In this section we present a numerical solution of eq. (5)
calculated for low-lying 2+ states in 24O, where a time-
dependent approach has previously been applied [7]. The
E2 strength function is calculated according to the follow-
ing steps:

1) A static HF calculation is performed to obtain the
initial ground state. The neutron 2s1/2 state is assumed
to be the last fully occupied neutron orbit of 24O. The
Skyrme III is used as the effective interaction. It has
been used as one of the standard parameterizations of
the Skyrme force in nuclear-structure calculations even for
very neutron-rich nuclei [13,14]. The single-particle wave
functions are confined to a sphere with radius of 12 fm.
The mesh size used is 0.1 fm.

2) To obtain the correlated ground state |Φ0〉, we
evolve the HF ground state using the TDDM equations
for ψα(1, t), nαα′(t) and Cα1α2α′

1α′
2
(t) [6,7] and the fol-

lowing time-dependent residual interaction:

v(t) = (1− e−t/τ )v(r − r′). (20)

The time constant τ should be sufficiently large to obtain
a nearly stationary solution of the TDDM equations [15].
We choose τ to be 300 fm/c. In the calculation of nαα′(t)
and Cα1α2α′

1α′
2
(t), the single-particle states are limited to

the neutron orbits 1d5/2, 2s1/2, and 1d3/2. In a consistent
calculation the residual interaction should be the same as

Fig. 1. Strength distributions of the neutron quadrupole
modes in 24O calculated in STDDM (solid line), RPA (dashed
line) and SRPA (dotted line).

that used to generate the mean field. However, a Skyrme-
type force contains momentum-dependent terms, which
make the computation time of two-body matrix elements
quite large. Therefore, we need to use a simple force of
the δ-function form v ∝ δ3(r − r′). We use the following
pairing-type residual interaction of the density-dependent
δ-function form [16]:

v(r − r′) = v0(1− ρ(r)/ρ0)δ3(r − r′), (21)

where ρ(r) is the nuclear density. The parameters ρ0 and
v0 are set to be 0.16 fm−3 and −1000 MeV fm3, respec-
tively. Similar values of ρ0 and v0 have been used in the
Hartree-Fock-Bogoliubov calculations [17–19] in a trun-
cated single-particle space. The time step used to solve
the TDDM equations is 0.75 fm/c.

3) At t = 5τ we stop the TDDM calculation and
solve eq. (5). Since we are interested in low-lying states
which originate in inner-shell transitions, we use only the
neutron 1d5/2, 2s1/2, and 1d3/2 states. The dimension of
the Hamiltonian matrix is about 650 × 650 when these
single-particle states are used. The strength function for
2+ states is calculated using eq. (18) with Q = r2Y20(θ, φ).
We use Γ = 0.5 MeV.

The eigenvalues of some 2+ states become imaginary
because the Hamiltonian matrix of eq. (5) is not Her-
mitian. However, their imaginary components are quite
small (less than 0.08 MeV). Some 2+ states have also neg-
ative quadrupole strengths because the positivity of S(E)
is not guaranteed. However, the negative contributions are
so small that S(E) becomes almost positive in the entire
energy region when it is smoothed with Γ = 0.5 MeV.
The obtained result in STDDM (solid line) is shown in
fig. 1, where the strength functions in RPA (dashed line)
and SRPA (dotted line) are also presented for comparison.
The first 2+ state calculated in STDDM is energetically
shifted upward and becomes significantly more collective
as compared with that in RPA. The increase in the excita-
tion energy is due to the lowering of the ground state, and
the enhancement of the collectivity of the first 2+ state
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is due to the mixing of two-body configurations intensi-
fied by ground-state correlations. These properties of the
first 2+ state under the influence of ground-state corre-
lations are similar to those obtained from quasi-particle
RPA calculations [20,21] and also from the TDDM calcu-
lation [7]. Large single-particle space including continuum
states has been used in these realistic calculations [20,
21,7] so as to deal with giant resonances as well as low-
lying states. Therefore, only a semi-quantitative compari-
son between our previous TDDM result [7] and the present
STDDM calculation, which can only be performed in very
truncated single-particle space, should be made for lowest-
lying states. In SRPA, where ground-state correlations
are neglected, the 2+ states become also collective due
to the coupling to two-particle–two-hole configurations,
as shown in fig. 1. However, their excitation energies are
simply shifted downward. This might cause serious prob-
lems when unperturbed particle-hole energies are small
and (or) when the coupling to two-body configurations is
strong. The numerical solution of eq. (5) shown in this
section is physically reasonable and also gives additional
justification to its equivalent time-dependent approach.

4 Discussions

In this section we discuss a relation between STDDM and
a more elaborate Extended RPA theory (ERPA) which
has hermiticity [8]. First, we briefly present the ERPA the-
ory. The ground state |Φ0〉 in ERPA is constructed so that

〈Φ0|[H, a+
αaα′ ]|Φ0〉 = 0, (22)

〈Φ0|[H, a+
α1
a+

α2
aα′

2
aα′

1
]|Φ0〉 = 0, (23)

〈Φ0|[H, a+
α1
a+

α2
a+

α3
aα′

3
aα′

2
aα′

1
]|Φ0〉 = 0 (24)

are satisfied for any single-particle indices. In other words,
n0

αα′ , C0
α1α2α′

1α′
2
, and the three-body correlation matrix

C0
α1α2α3α′

1α′
2α′

3
are determined so that the above equations

are satisfied. The explicit expressions for eqs. (22)-(24) are
shown in ref. [8]. Although it is not evident to find an ana-
lytic solution of eqs. (22)-(24) [22], a method for obtaining
n0

αα′ and C0
α1α2α′

1α′
2
numerically has been proposed in

ref. [15] and already been tested for realistic nuclei [6,7,23]
as was shown in sect. 3. The ERPA equations are formu-
lated using the equation-of-motion approach [24,25] as

〈Ψ0|[[a+
αaα′ ,H], Q+]|Ψ0〉 = ω〈Ψ0|[a+

αaα′ , Q+]|Ψ0〉 (25)

〈Ψ0|[[: a+
α1
a+

α2
aα′

2
aα′

1
:,H], Q+]|Ψ0〉 =

ω〈Ψ0|[: a+
α1
a+

α2
aα′

2
aα′

1
:, Q+]|Ψ0〉, (26)

where the operator Q+ is defined as

Q+ =
∑
(xλλ′a+

λ aλ′ +Xλ1λ2λ′
1λ′

2
: a+

λ1
a+

λ2
aλ′

2
aλ′

1
:), (27)

and |Ψ0〉 is assumed to have the following properties:
Q+|Ψ0〉 = |Ψ〉 , (28)
Q|Ψ0〉 = 0 . (29)

In eqs. (26) and (27), : : stands for : a+
α1
a+

α2
aα′

2
aα′

1
:=

a+
α1
a+

α2
aα′

2
aα′

1
− A(a+

α1
aα′

1
〈Φ0|a+

α2
aα′

2
|Φ0〉 + a+

α2
aα′

2

〈Φ0|a+
α1
aα′

1
|Φ0〉). Equations (25) and (26) can be

written in matrix form(
A C
B D

)(
x
X

)
= ω

(
S1 T1

T2 S2

)(
x
X

)
, (30)

where each matrix element is evaluated using the ground
state |Φ0〉:

S1(α′α : λλ′) = 〈Φ0|[a+
αaα′ , a+

λ aλ′ ]|Φ0〉, (31)
S2(α′

1α
′
2α1α2 : λ1λ2λ

′
1λ

′
2) =

〈Φ0|[: a+
α1
a+

α2
aα′

2
aα′

1
:, : a+

λ1
a+

λ2
aλ′

2
aλ′

1
:]|Φ0〉, (32)

T1(α′α : λ1λ2λ
′
1λ

′
2) =

〈Φ0|[a+
αaα′ , : a+

λ1
a+

λ2
aλ′

2
aλ′

1
:]|Φ0〉, (33)

T2(α′
1α

′
2α1α2 : λλ′) =

〈Φ0|[: a+
α1
a+

α2
aα′

2
aα′

1
:, a+

λ aλ′ ]|Φ0〉, (34)

A(α′α : λλ′) = 〈Φ0|[[a+
αaα′ ,H], a+

λ aλ′ ]|Φ0〉, (35)
B(α′

1α
′
2α1α2 : λλ′) =

〈Φ0|[[: a+
α1
a+

α2
aα′

2
aα′

1
:,H], a+

λ aλ′ ]|Φ0〉, (36)

C(α′α : λ1λ2λ
′
1λ

′
2) =

〈Φ0|[[a+
αaα′ ,H], : a+

λ1
a+

λ2
aλ′

2
aλ′

1
:]|Φ0〉, (37)

D(α′
1α

′
2α1α2 : λ1λ2λ

′
1λ

′
2) =

〈Φ0|[[: a+
α1
a+

α2
aα′

2
aα′

1
:,H], : a+

λ1
a+

λ2
aλ′

2
aλ′

1
:]|Φ0〉.

(38)

All matrices in the above are written in terms of n0
αα′ ,

C0
α1α2α′

1α′
2
, and C0

α1α2α3α′
1α′

2α′
3
, which are shown in

ref. [8]. Due to eqs. (22)-(24), the above matrices have
the following symmetries:

A(α′α : λλ′) = A(λ′λ : αα′) = A(λλ′ : α′α)∗, (39)
B(α′

1α
′
2α1α2 : λλ′) = C(λ′λ : α1α2α

′
1α

′
2) =

C(λλ′ : α′
1α

′
2α1α2)∗, (40)

D(α′
1α

′
2α1α2 : λ1λ2λ

′
1λ

′
2) = D(λ′

1λ
′
2λ1λ2 : α1α2α

′
1α

′
2)=

D(λ1λ2λ
′
1λ

′
2 : α

′
1α

′
2α1α2)∗. (41)

We explain in more detail the last relation as an example.
The following relation always holds due to the operator
identity

D(α′
1α

′
2α1α2 : λ1λ2λ

′
1λ

′
2)−D(λ′

1λ
′
2λ1λ2 : α1α2α

′
1α

′
2) =

〈Φ0|[[: a+
α1
a+

α2
aα′

2
aα′

1
:,H], : a+

λ1
a+

λ2
aλ′

2
aλ′

1
:]|Φ0〉

−〈Φ0|[[: a+
λ1
a+

λ2
aλ′

2
aλ′

1
:,H], : a+

α1
a+

α2
aα′

2
aα′

1
:]|Φ0〉 =

−〈Φ0|[H, [: a+
α1
a+

α2
aα′

2
aα′

1
:, : a+

λ1
a+

λ2
aλ′

2
aλ′

1
:]]|Φ0〉. (42)

The commutation relation between the two-body oper-
ators in the last line of the above equation is reduced to
three-body operators at most. Since eqs. (22)-(24) are
valid, the last line of eq. (42) is identical to zero. Thus,
the symmetry of the matrix D is proven.
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The orthonormality condition in ERPA is given by [26]

(x∗
µ′ X∗

µ′)
(
S1 T1

T2 S2

)(
xµ

Xµ

)
= δµµ′ , (43)

where xµ and Xµ constitute an eigenstate of eq. (30) with
ω = ωµ. The completeness relation becomes

∑
µ

(
xµ

Xµ

)
(x∗

µX
∗
µ)

(
S1 T1

T2 S2

)
= I. (44)

The transition amplitudes for one-body and two-body op-
erators, zαα′ = 〈Ψ0|a+

α′aα|Ψ〉 and Zα1α2α′
1α′

2
= 〈Ψ0| :

a+
α′

1
a+

α′
2
aα1aα2 : |Ψ〉, are calculated as follows:

(
z
Z

)
=

(
S1 T1

T2 S2

)(
x
X

)
. (45)

Now we show a relation between STDDM and ERPA.
When the eigenvector (x,X) in STDDM is transformed
to (y, Y ) as (

x
X

)
=

(
S1 T1

T2 S′
2

)(
y
Y

)
, (46)

where S′
2 has no terms with the three-body correlation

matrices, the equation in STDDM becomes(
aS1 + cT2 aT1 + cS′

2

bS1 + dT2 bT1 + dS′
2

)(
y
Y

)
=ω

(
S1 T1

T2 S′
2

)(
y
Y

)
. (47)

It is straightforward to prove that when the three-
body correlation matrices Cα1α2α3α′

1α′
2α′

3
are neglected,

three blocks of the above Hamiltonian matrix satisfy
the identities A = aS1 + cT2, B = bS1 + dT2, and
C = aT1 + cS′

2. We explain the relation B = bS1 +
dT2 in detail. When two-body and three-body operators
are decomposed using a+

α1
a+

α2
aα′

2
aα′

1
=: a+

α1
a+

α2
aα′

2
aα′

1
:

+A(a+
α1
aα′

1
〈Φ0|a+

α2
aα′

2
|Φ0〉+ a+

α2
aα′

2
〈Φ0|a+

α1
aα′

1
|Φ0〉) for a

two-body operator and a similar relation for a three-body
operator, the commutation relation [: a+

α1
a+

α2
aα′

2
aα′

1
:,H]

becomes

[: a+
α1
a+

α2
aα′

2
aα′

1
:,H] =

∑
λλ′

b(α1α2α
′
1α

′
2 : λλ

′)a+
λ′aλ

+
∑

λ1λ2λ′
1λ′

2

d(α1α2α
′
1α

′
2 : λ1λ2λ

′
1λ

′
2) : a

+
λ′

1
a+

λ′
2
aλ2aλ1 :

+
∑

λ1λ2λ3λ′
1λ′

2λ′
3

e(α1α2α
′
1α

′
2 : λ1λ2λ3λ

′
1λ

′
2λ

′
3)

: a+
λ′

1
a+

λ′
2
a+

λ′
3
aλ3aλ2aλ1 :, (48)

where the matrix e consists of matrix elements of
the two-body interaction. In STDDM, the last term
on the right-hand side of the above equation is ne-
glected. It is clear from eq. (48) that B = 〈Φ0|[[:
a+

α1
a+

α2
aα′

2
aα′

1
:,H], a+

λ aλ′ ]|Φ0〉 = bS1 + dT2. The matrix D

has some terms which cannot be written by using bT1+dS′
2

even if the three-body correlation matrices are neglected:
For example, all terms with the square of the two-body
correlation matrix cannot be expressed with bT1. Thus, it
is found that STDDM is identical to ERPA under the fol-
lowing two assumptions: The first is that the three-body
correlation matrices can be neglected and the second is
that D ≈ bT1 + dS′

2. Our numerical calculations so far
performed suggest that these assumptions are quite rea-
sonable. However, whether the non-hermiticity problem
is always contained within reasonable limits or not is a
subject to be investigated in further applications.

5 Summary

The eigenstates of the small amplitude limit of the time-
dependent density-matrix theory (STDDM) were calcu-
lated for the low-lying 2+ states in 24O to better under-
stand the foundation of its corresponding time-dependent
approach. It is found that STDDM properly deals with
the effects of ground-state correlations on the low-lying
2+ states and that the non-hermiticity of STDDM is
quite moderate: The eigenvalues have quite small imag-
inary parts and the strength function is practically posi-
tive definite although it is not guaranteed because of its
non-Hermitian form. A comparison of STDDM and an
Extended RPA (ERPA) theory with hermiticity was also
made, and it is found that STDDM is a reasonable approx-
imation to the ERPA theory. STDDM involves diagonal-
ization of a Hamiltonian matrix whose dimension rapidly
increases with increasing number of single-particle orbits.
In realistic calculations, therefore, the time-dependent ap-
proach (TDDM) which simply follows the time evolution
of the one-body and two-body amplitudes seems more
practical than STDDM: In fact, all the single-particle
states up to the 2p3/2 and 1f7/2 were taken for both pro-
tons and neutrons in the TDDM calculation for 24O [7].

Appendix A.

The matrices in eq. (5) are given as

a(αα′ : λλ′) = (εα − εα′)δαλδα′λ′

−
∑

β

(〈βλ′|v|α′λ〉An0
αβ − 〈αλ′|v|βλ〉An0

βα′), (A.1)

b(α1α2α
′
1α

′
2 : λλ

′) = −δα1λ

{ ∑
βγδ

[(δα2β − n0
α2β)n

0
γα′

1
n0

δα′
2

+n0
α2β(δγα′

1
− n0

γα′
1
)(δδα′

2
− n0

δα′
2
)]〈λ′β|v|γδ〉A

+
∑
βγ

(〈λ′α2|v|βγ〉C0
βγα′

1α′
2
+ 〈λ′β|v|α′

1γ〉AC0
α2γα′

2β

−〈λ′β|v|α′
2γ〉AC0

α2γα′
1β

}
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+δα2λ

{ ∑
βγδ

[(δα1β − n0
α1β)n

0
γα′

1
n0

δα′
2

+n0
α1β(δγα′

1
− n0

γα′
1
)(δδα′

2
− n0

δα′
2
)]〈λ′β|v|γδ〉A

+
∑
βγ

[〈λ′α1|v|βγ〉C0
βγα′

1α′
2

+〈λ′β|v|α′
1γ〉AC0

α1γα′
2β − 〈λ′β|v|α′

2γ〉AC0
α1γα′

1β ]
}

+δα′
1λ′

{ ∑
βγδ

[(δδα′
2
− n0

δα′
2
)n0

α1βn
0
α2γ

+n0
δα′

2
(δα1β − n0

α1β)(δα2γ − n0
α2γ)]〈βγ|v|λδ〉A

+
∑
βγ

[〈βγ|v|λα′
2〉C0

α1α2βγ

+〈α1β|v|λγ〉AC0
α2γα′

2β − 〈α2β|v|λγ〉AC0
α1γα′

2β ]
}

−δα′
2λ′

{ ∑
βγδ

[(δδα′
1
− n0

δα′
1
)n0

α1βn
0
α2γ

+n0
δα′

1
(δα1β − n0

α1β)(δα2γ − n0
α2γ)]〈βγ|v|λδ〉A

+
∑
βγ

[〈βγ|v|λα′
1〉C0

α1α2βγ

+〈α1β|v|λγ〉AC0
α2γα′

1β − 〈α2β|v|λγ〉AC0
α1γα′

1β ]
}

+
∑

β

[〈α1λ
′|v|βλ〉AC0

βα2α′
1α′

2
− 〈α2λ

′|v|βλ〉AC0
βα1α′

1α′
2

−〈βλ′|v|α′
2λ〉AC0

α1α2α′
1β + 〈βλ′|v|α′

1λ〉AC0
α1α2α′

2β ],

(A.2)
c(αα′ : λ1λ2λ

′
1λ

′
2) = 〈αλ′

2|v|λ1λ2〉δα′λ′
1

−〈λ′
1λ

′
2|v|α′λ2〉δαλ1 , (A.3)

d(α1α2α
′
1α

′
2 : λ1λ2λ

′
1λ

′
2) =

(εα1 + εα2 − εα′
1
− εα′

2
)δα1λ1δα2λ2δα′

1λ′
1
δα′

2λ′
2

+δα′
1λ′

1
δα′

2λ′
2

∑
βγ

(δα1βδα2γ − δα2γn
0
α1β

−δα1βn
0
α2γ)〈βγ|v|λ1λ2〉

−δα1λ1δα2λ2

∑
βγ

(δα′
1βδα′

2γ − δα′
2γn

0
βα′

1

−δα′
1βn

0
γα′

2
)〈λ′

1λ
′
2|v|βγ〉

+δα2λ2δα′
2λ′

2

∑
β

(〈α1λ
′
1|v|βλ1〉An0

βα′
1

−〈βλ′
1|v|α′

1λ1〉An0
α1β)

+δα2λ2δα′
1λ′

1

∑
β

(〈α1λ
′
2|v|βλ1〉An0

βα′
2

−〈βλ′
2|v|α′

2λ1〉An0
α1β)

+δα1λ1δα′
1λ′

1

∑
β

(〈α2λ
′
2|v|βλ2〉An0

βα′
2

−〈βλ′
2|v|α′

2λ2〉An0
α2β)

+δα1λ1δα′
2λ′

2

∑
β

(〈α2λ
′
1|v|βλ2〉An0

βα′
1

−〈βλ′
1|v|α′

1λ2〉An0
α2β), (A.4)

where n0
αα′ = 〈Φ0|a+

α′aα|Φ0〉 and C0
α1α2α′

1α′
2

=
〈Φ0|a+

α′
1
a+

α′
2
aα2aα1 |Φ0〉−A(n0

α1α′
1
n0

α2α′
2
), and the subscript

A indicates that the corresponding matrix element is an-
tisymmetrized.
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et al., Phys. Rep. 197, 1 (1990).
13. T. Otsuka, N. Fukunishi, H. Sagawa, Phys. Rev. Lett. 70,

1385 (1993).
14. E. Khan, N. Van Giai, Phys. Lett. B 472, 253 (2000).
15. M. Tohyama, Prog. Theor. Phys. 94, 147 (1995).
16. R.R. Chasman, Phys. Rev. C 14, 1935 (1976).
17. J. Terasaki, H. Flocard, P.-H. Heenen, P. Bonche, Nucl.

Phys. A 621, 706 (1997).
18. T. Duguet, P. Bonche, P.-H. Heenen, Nucl. Phys. A 679,

427 (2001).
19. M. Yamagami, K. Matsuyanagi, M. Matsuo, Nucl. Phys.

A 693, 579 (2001).
20. M. Matsuo, Nucl. Phys. A 696, 371 (2001).
21. E. Khan, N. Sandulescu, M. Grasso, N. Van Giai, Phys.

Rev. C 66, 024309 (2002).
22. M. Tohyama, P. Schuck, S.J. Wang, Z. Phys. A 339, 341

(1991).
23. M. Tohyama, Phys. Rev. C 58, 2603 (1998).
24. D.J. Rowe, Rev. Mod. Phys. 40, 153 (1968).
25. P. Ring, P. Schuck, The Nuclear Many-Body Problem

(Springer, Heidelberg, 1980).
26. K. Takayanagi, K. Shimizu, A. Arima, Nucl. Phys. A 477,

205 (1988).


